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Abstract

Deep Neural Networks (DNNs) have often supplied
state-of-the-art results in pattern recognition tasks.
Despite their advances, however, the existence of
adversarial examples have caught the attention of
the community. Many existing works have proposed
methods for searching for adversarial examples within
fixed-sized regions around training points. Our work
complements and improves these existing approaches
by adapting the size of these regions based on the
problem complexity and data sampling density. This
makes such approaches more appropriate for other
types of data and may further improve adversarial
training methods by increasing the region sizes with-
out creating incorrect labels.

1 Introduction

Machine Learning (ML) models are often used in many
difficult to define tasks such as image-recognition, lan-
guage translation, and generation of novel works of
art. Deep Neural Networks (DNNs), in particular, are
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ac.uk

an architectural-type model that has provided many
of the state-of-the-art results [Lecun et al., 2015]. De-
spite their impressive performance, DNNs, however,
have been shown to be susceptible to adversarial ex-
amples [Goodfellow et al., 2016, Szegedy et al., 2013].
These examples occur when a small (often human-
imperceptible) change to input causes a change in
output classification made by the DNN [Guo et al.,
2019].

Definition 1. Given f , the classification imple-
mented by a DNN, and some small perturbation ε
of an input x, an adversarial x? is ε-close to x with
f(x?) 6= f(x), while x? belongs to the same class as
x.

It is well studied adversarial examples exist within
small regions around the training data. Szegedy et al.
[2013] show how the presence of adversarial examples
contradicts the general belief that DNN’s complexity
makes them good at generalising to unseen examples.
Later work by Goodfellow et al. [2014] proposes the
Fast Gradient Sign Method to generate adversarial
examples from a closed n-ball around the input. This
method perturbs the input pixel values in the direction
of the cost function’s gradient. While Goodfellow
et al. [2014] employ gradient information of the model,
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Gu and Rigazio [2014], Huang et al. [2017b] use a
black box assumption to find adversarial examples
by choosing a random dimension (or pixel) on the
input space Gu and Rigazio [2014] or on activation
maps Huang et al. [2017b] for which an ε is added
and subtracted from the original value. The model is
repeatedly queried to determine if the perturbation
would result in a misclassification. Lindenbaum et al.
[2018] apply a diffusion map algorithm to generate
a reduced data space. The authors synthesise new
points within sparse regions of the data space, under
the assumption that more adversarials will occur due
to the lack of information in these areas. While we also
use the assumption that adversarials may preferably
appear in under-sampled areas where DNNs are under-
trained, we also consider these areas very carefully, as
the location of class boundaries are more uncertain
there. Hence, we argue these areas should not be used
blindly to search for adversarials, but the areas should
be restricted based on uncertainty on class boundary
location.

Indeed, while in the context of these studies, the
proposed algorithms are targeted at image-based clas-
sifiers in which small perturbations don’t generally
cause a change of class, and can be visually inspected
for class type, the same algorithms may pose problems
for other types of data. In datasets with jagged class
boundaries, small changes may inadvertently push
data across true class decision boundaries and thus
incorrectly label the data. The focus of our study
is therefore to provide a mechanism to quantify the
amount of perturbation that can be safely applied
(without change of class) to a dataset. This quan-
tification may enable the use of existing adversarial
generation algorithms, and allow their use for non-
image types of data. Our proposed method estimates
the density of samples within the data manifold to
identify areas where true class boundaries may be
uncertain. This allows defining regions where adver-
sarial generation algorithms may be safely used in
future work.

The organisation of this article is as follows: in
Section 2 we review the existing material for the char-
acterisation of complexity and density from manifold
geometry. Our method is explained in Section 3. As
this is a work in progress, experimental results will

be provided in a future publication. We give our
concluding remarks in Section 4.

2 Related Work

A key element of our study is the determination of
the complexity of class boundaries, which impacts the
uncertainty on their localisation. Ho and Basu [2002]
examine how 7 different metrics can be used to charac-
terise the complexity in binary classification problems.
They are used to form an embedding space where
datasets are organised based on their complexity. The
metrics include the Fisher Discriminant Ratio that
considers the distribution of values of a single feature
across the elements of a class, and describes the over-
lap between the distributions of two classes. Later
work by Orriols-Puig et al. [2010] provides an update
for the original calculation of the Fisher Discrimi-
nant Ratio to account for ordinal features as well as
multi-class datasets.

Another metric proposed by Ho and Basu [2002] is
the Fraction of Hyperspheres Covering Data. Neigh-
bourhoods are increasingly expanded until they reach
a data-point from another class. Smaller neighbour-
hoods contained within large ones are eliminated and
the ratio between the total number of neighbourhoods
and the number of data-points is computed. For sim-
pler datasets, a few number of neighbourhoods are
needed to cover the dataset. Lorena et al. [2019] pro-
vide an additional improvement on this approach by
stopping the expansion of neighbourhoods when the
spheres from different classes meet. This was used
by Frank and Hubert [1996] as a mean to find the
middle line between data points of different classes, in
order to estimate the location of class boundaries and
hence provide a classification function. Work by Sinha
et al. [2019] use this notion of covering data to sample
possible adversarials to be included in the training
procedure for more robustness. Our work builds on
these techniques to define adaptive neighbourhoods
that incorporate information on the sampling density
of the data manifold, making it more applicable for
adversarial generation.

More recent work for characterisation of large image
datasets is shown by Branchaud-Charron et al. [2019].
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As image data often resides in a high-dimensional
space, many of the proposed complexity analysis met-
rics become computationally intractable, especially
for large class numbers. A similarity matrix of a lower-
dimensional latent representation is created and sum-
marised using spectral clustering. Low eigenvalues for
the resulting embedding indicate a low inter-class over-
lap. They demonstrate this effect on MNIST [LeCun
et al., 1998] where swapped labels increase the eigen-
values. The difference in eigenvalues is normalised
and summed to give a final complexity metric.

Many works use properties of the manifold to de-
sign methods of improving DNN robustness. Ahmad
and Scheinkman [2019] use the sparsity and high-
dimensionality to develop sparse DNN weight matri-
ces that appear to increase the overall robustness of
the network to random perturbations that may occur
due to noise. Srinivasan et al. [2019] design an adver-
sarial defence method using Markov Chain Sampling
of the manifold. Their technique aims to drive ad-
versarial examples towards the more dense regions of
the manifold as they explain the output predictions
in sparse regions can be unpredictable and more sus-
ceptible towards attacks. Our work can be seen as
complementary to these approaches by providing a
region where the DNNs robustness to adversarial can
be appropriately tested.

3 Methodology

Many approaches for the automated construction of
adversarial examples use a fixed-sized ε for the local
neighbourhoods around training points [Huang et al.,
2017a, Goodfellow et al., 2014, 2016]. To ensure these
local neighbourhoods are within class boundaries, we
propose the use of dataset complexity and of density
analysis of the data manifold to provide an adaptive
ε for each sample.

Our adaptive definition of neighbourhoods relies
on the properties of the data manifold, detailed in
Section 3.1. In particular, they involve the notion of
sampling density of the data manifold (Section 3.2)
to assist in iteratively building neighbourhoods that
may remain within class boundaries according to the
available class information (Section 3.3).

xi
ε Class decision

boundary

Figure 1: Example where a data point xi lies close to
the class decision boundary. In these situations, too
large ε values, may push the synthetically generated
point over true class boundaries.

3.1 Manifold properties

Many ML applications and learning techniques oper-
ate under the assumption of a manifold hypothesis
[Narayanan and Mitter, 2010, Brahma et al., 2016],
where real/natural high-dimensional data lie on a low-
dimensional manifold embedded within their high-
dimensional space. The consequence of this assump-
tion is data has a local homeomorphism with a Eu-
clidean space of lower dimensionality that is a local
approximation to the manifold [Brahma et al., 2016].
Therefore, the local neighbourhood of data points may
be approximately measured with a Euclidean-based
metric.

Definition 2. Let (X , d) be a metric space with X
the space of data points X and d the Euclidean dis-
tance. The ε-neighbourhood of a point xi ∈ X is
defined as [Schubert, 1968]:

Nε(xi) := {x | d(x, xi) < ε}

Our method considers two properties of the dataset:
M1 The geometric complexity of the class boundaries.
M2 The sparsity/density of sampling from the data
manifold that constitutes the training data.

M1 refers to situations where differently labelled
data points lay close together in the topological space,
and therefore any perturbation of the data points
could result in passing the class boundaries, while
wrongly labelling the perturbation the same as the
original (Fig. 1).

M2 concerns the number of samples from different
regions of the data manifold. In sparse regions (small
numbers of samples), estimated class boundaries may
seem deceivingly simple, e.g. linear with a wide mar-
gin [Ho and Basu, 2002] (Fig. 2a). By increasing the
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(a) Sparse regions of the
manifold may appear sim-
ple due to the lack of in-
formation.

(b) More data points en-
able more precise estima-
tion of the class boundary.

Figure 2: Example scenario where true class bound-
aries are revealed when more data is collected.

number of examples (i.e. collecting more data), the
true complexity of the classification task may become
apparent (Fig. 2b).

3.2 Estimating sparsity/density

Sparsity of the manifold is measured using KDE from
support examples for each class. KDE uses a real-
valued radial basis function (RBF) ϕ, a function of the
distance between some point x (the centre or origin)
and another point x. We use the inverse-multiquadric
function (Eq. 1) as it has a non-shrinking value away
from the origin.

ϕ(x;x) =
1√

1 + (εr)2
, where r =‖ x− x ‖ (1)

Providing the RBF’s width parameter is suitably
chosen, we achieve a good measure of the density
through the sum of the RBFs centred on all data
points Xc of class c (Eq. 2).

ρc(x) =
∑
xj∈Xc

ϕ(x;xj) (2)

3.3 Constructing neighbourhoods

We construct an adaptive neighbourhood for each
point of our dataset, as a sphere of finely tuned radius.
The neighbourhoods for all data points are created
by jointly maximising the individual volumes of the
spheres, under the constraint that sphere of different
classes don’t overlap. In addition, to account for lack
of knowledge in under-sampled areas, we keep the
sphere’s volume limited to a linear function of the

local sampling density ρc(x) for the class. This is
expressed by the following Lagrangian function:

L(ε1, · · · , εn, x1, · · · , xn, λ) = v(ε1, · · · , εn)

+λgg(ε1, · · · , εn, x1, · · · , xn)

+λhh(ε1, · · · , εn, x1, · · · , xn)

(3)

where v is the volume function, from Rn to Rn, to be
maximised:

v(ε1, · · · , εn) =

ε
D
1
...
εDn

 (4)

and

g(ε1, · · · , εn, x1, · · · , xn) =
∑

j 6=1
c(j)6=c(1)

min(d (x1, xj)− (ε1 + εj), 0)

...∑
j 6=n

c(j)6=c(n)
min(d (xn, xj)− (εn + εj), 0)

 (5)

h(ε1, · · · , εn, x1, · · · , xn) =ε
D
1
...
εDn

− α
ρc(1)(x1)

...
ρc(n)(xn)

 + β (6)

are the Lagrangian constraints for no intersection and
volume depending linearly on density, respectively,
which should be both equal to zero. c(i) is the class
of point i. Note that when two spheres of different
classes are too close to each other, they may not
simultaneously respect both constraints of not inter-
secting while attaining their full size depends on local
density for their respective classes. Therefore, the
optimisation problem needs to be relaxed.

An iterative algorithm may achieve an approximate
result as the relaxed optimisation (Fig. 3). This itera-
tive version is reminiscent of classification algorithms
by Frank and Hubert [1996], and complexity analysis
algorithms by Ho and Basu [2002] and Lorena et al.
[2019], but further developed to incorporate a decay
function to limit the expansion of the neighbourhoods
based on local density.
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x1ε1

ε

x2

x3

Figure 3: Iterative ε-expansion process in a binary
class scenario. The two classes are distinguished by
the dotted and solid circles.

Small initial neighbourhoods are progressively ex-
panded, with their radius at iteration n being εni =
εn−1i + ∆εni , subject to avoiding overlap of neigh-
bourhoods from different classes (Eq. 5), and with
an exponentially decreasing expansion that further
depends on the local density of samples for the related
class (Eq. 6):

∆εni = e−ρc(i)(xi)·n (7)

In areas of low density, so with insufficient number
of samples to safely determine the location of class
boundaries, the expansion is slower and generates a
conservative small final neighbourhood. Expansion
stops when it reaches a low threshold ∆εmin making
it insignificant.

This method may be further improved in future
work by accounting for the complexity of class bound-
aries in Eq. 7, e.g. using complexity metrics of Ho
and Basu [2002].

We provide results for the Iris flower dataset [Fisher,
1936] in Fig 4. In regions containing densely-packed
samples of the same class, neighbourhoods tend to
grow larger and cover the space as there is more in-
formation to be more confident about class boundary
placement. In other sparse regions with uncertain
location of class boundaries however, neighbourhood
size is limited appropriately. The use of this dataset
aims to demonstrate the possible support from our
algorithm for adversarial generation for non image-
based datasets. Future work will consider the effec-
tiveness of existing adversarial training algorithms
when amounts of perturbation are specified by these
neighbourhoods.

Algorithm 1: Calculate εi for data point xi
Input : each sample of manifold X
Output : ε value for each sample of X

1 ∆εmin ← 1e− 20
2 for xi ∈ X do
3 εi ← 0
4 stopi ← false

5 end for
6 while ∃i such that stopi = false do
7 for xi ∈ X such that stopi = false do
8 for xj 6∈ Xc(i) do
9 if d(xi, xj) ≤ εi + εj then

10 stopi ← true
11 end if

12 end for
13 if stopi = false then

14 ∆εi ← e−ρc(i)(xi)n

15 if ∆εi ≤ ∆εmin then
16 stopi ← true
17 end if
18 else
19 εi ← εi + ∆εi
20 end if

21 end if

22 end for

23 end while
24 return ε

4 Conclusion

We propose a method to characterise the amount
of perturbation that can be safely applied to data
without a change of class label, in order to ease the
search for adversarials. It uses two properties of the
data manifold to address two main concerns with
current automatic generation of adversarial exam-
ples: (1) sparse regions of the manifold does not give
enough information as to the true class boundaries,
and blind perturbations may push data points across
these boundaries; and (2) a single value of perturba-
tion for the entire dataset does not appropriately cover
the geometric complexities of the class boundaries.

In this article, we demonstrate an iterative method
to determine adaptive sizes of neighbourhoods based
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Figure 4: Proposed adaptive neighbourhoods for the
Iris dataset. The three classes of flower are repre-
sented by different shaped markers. The size of the
neighbourhood for each sample is indicated with a
circle centred on the data point. Intersections be-
tween neighbourhoods of different classes are not real
but are visualisation artefacts coming from the 2D
projection of 4 dimensions.

on local sampling density. These neighbourhoods may
provide a search space for existing algorithms to gener-
ate adversarial examples. Moreover, our method may
further enable the use of existing adversarial training
algorithms for non image-based datasets. Our method
may be further improved by accounting for the com-
plexity of the classification problem, and therefore
of class boundaries, in the design of our adaptive
neighbourhoods. This improvement and further ex-
periments are left for future work.
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Ana C Lorena, Lúıs PF Garcia, Jens Lehmann, Mar-
cilio CP Souto, and Tin Kam Ho. How complex
is your classification problem? A survey on mea-
suring classification complexity. ACM Computing
Surveys, 52(5):1–34, 2019.

Hariharan Narayanan and Sanjoy Mitter. Sample
complexity of testing the manifold hypothesis. In
Advances in neural information processing systems,
pages 1786–1794, 2010.
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